2006 Chemistry

Advanced Higher

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Advanced Higher Chemistry

General information for markers

The general comments given below should be considered during all marking.

1 Marks should **not** be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?

The answer 'red, blue' gains no marks.

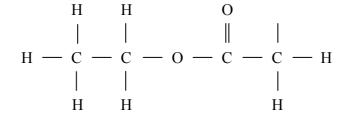
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?

If the correct answer is related to a low melting point, and the candidate's answer is 'It has a low melting point and is coloured grey' this would **not** be treated as a cancelling error.

- 4 Full marks should be awarded for the correct answer to a calculation on its own whether or not the various steps are shown **unless the question is structured or working is specifically asked for.**
- 5 A mark should be deducted in a calculation for each arithmetic slip **unless stated otherwise in the Marking Instructions.** No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.
- 6 A mark should be deducted for incorrect or missing units **unless stated otherwise in the Marking Instructions**. Please note, for example, that KJ mol⁻¹ is not acceptable for kJ mol⁻¹ and a mark should be deducted.
- 7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.
- 8 No mark is given for the solution of an equation which is based on a wrong principle.

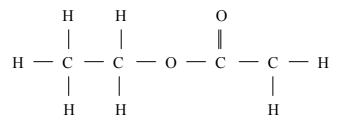
Example: Use the information in the table to calculate the standard entropy change for the reaction:

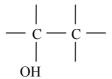

 $C_2H_2 + 2HCl \longrightarrow CH_2ClCH_2Cl$

Compound	S°/J K ⁻¹ mol ⁻¹
C ₂ H ₂	201
HCl	187
CH ₂ ClCH ₂ Cl	208

Using $\Delta S^{\circ} = S^{\circ}_{reactions} - S^{\circ}_{products}$ would gain zero marks.

- 9 No marks are given for the description of the wrong experiment.
- 10 Full marks should be given for correct information conveyed by a sketch or diagram in place of a written description or explanation.
- 11 In a structural formula, if one hydrogen atom is missing but the bond is shown, no marks are deducted.


Examples:


Would not be penalised as the structural formula for ethyl ethanoate.

If the bond is also missing, then zero marks should be awarded.

Example:

- 12 If a structural formula is asked for, CH₃- and CH₃CH₂- are acceptable as methyl and ethyl groups respectively.
- 13 With structures involving an OH or an NH_2 group, no mark should be awarded if the 'O' or 'N' are not bonded to a carbon, ie OH CH_2 and NH_2 – CH_2 .
- 14 When drawing structural formulae, no mark should be awarded if the bond points to the 'wrong' atom, eg

- 15 A symbol or correct formula should be accepted in place of a name **unless stated otherwise in the Marking Instructions**.
- 16 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.
- 17 If an answer comes directly from the text of the question, no marks should be given.

Example: A student found that 0.05 mol of propane, C_3H_8 burned to give 82.4 kJ of energy.

 $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l)$

Name the kind of enthalpy change which the student measured.

No marks should be given for 'burning' since the word 'burned' appears in the text.

18 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

$$CH_{3}$$

 $H_{3} - CH_{2} - CH - CH_{2} - CH_{2} - CH_{3}$

Name the hydrocarbon.

Although not completely correct, the answer, '3, methyl-hexane' would gain the full mark ie wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	pН
CH ₃ COOH	1.65
CH ₂ ClCOOH	1.27
CHCl ₂ COOH	0.90
CCl ₃ COOH	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Again, although not completely correct, an answer like 'the more $\rm Cl_2$, the stronger the acid' should gain the full mark.

Example 3: Why does the (catalytic) converter have a honeycomb structure?

A response like 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

2006 Chemistry Advanced Higher

Marking scheme

Section A

1.	D	21.	В
2.	В	22.	В
3.	A	23.	D
4.	В	24.	А
5.	A	25.	В
6.	D	26.	С
7.	С	27.	В
8.	В	28.	А
9.	В	29.	С
10.	A	30.	А
11.	С	31.	С
12.	А	32.	В
13.	D	33.	В
14.	D	34.	С
15.	С	35.	С
16.	С	36.	D
17.	D	37.	А
18.	А	38.	D
19.	В	39.	С
20.	А	40.	А

Marking Instructions

Chemistry Advanced Higher

Section B

Questi	on	Acceptable Answer	Mark	Unacceptable Answer
1 (a)	(i)	$+178.3 \text{ kJmol}^{-1}$ (units not required) = 178300J	1	-178.3
	(ii)	+159 J K ⁻¹ mol ⁻¹ (units not required) = $0.159 \text{ kJ K}^{-1} \text{ mol}^{-1}$ if also have the correct answer	1	-159
	(iii)	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ or $0 = \Delta H^{\circ} - T\Delta S^{\circ}$ (or equivalent expression) or $T = \Delta H^{\circ} / \Delta S^{\circ}$ $T = +178300/159$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	
		T = 1121.4 K or 1121 K or 1120 K Accept correct follow through from incorrect answers to (i) and (ii) Ignore conversion to °C	1	 -1 for no units or for ° K - 1121.4 K = 1 out of 2 if follows on
(b)	(i) (ii)	5 or V or (V) or \overline{V} or +5 or 5+ Calcium phosphate or calcium superphosphate or Ca ₃ (PO ₄) ₂ or (Ca ²⁺) ₃ (PO ₄ ³⁻) ₂ Correct name/ wrong formula = 1 Calcium phosphate(V) Also accept calcium phosphate(III) if III given as answer to b (i)	1	-5 or 5- Correct formula/wrong name dicalcium triphosphate

(Question	Acceptable Answer	Mark	Unacceptable Answer
2	(a)	Colourless to purple/pink or Pink/purple colour remains or Self-indicating/MnO ₄ ⁻ acts as own indicator	1	Clear to purple
	(b)	$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ (Accept multiples or submultiples) States not required, so ignore states	1	Electrons shown on either or both sides = 0 K ⁺ present = 0

Question	Acceptable Answer	Mark	Unacceptable Answer
(c)	No. of moles of $MnO_4^- = \frac{22.5 \times 0.020}{1000} = 0.00045$ 1 mole MnO_4^- reacts with $\frac{5}{2}$ moles $C_2O_4^{-2-}$	1	Incorrect answer, no working = 0 marks
	0.00045 mole MnO ₄ ⁻ reacts with $\frac{0.00045 \text{ x } 5}{2} = 0.001125$ $c = \frac{n}{V} = \frac{0.001125}{0.025} = 0.045 \text{ mol } 1^{-1} \text{ or } 0.045 \text{ M or } 0.045 \text{ mol} / \ell$	1	mol ⁻¹ loses 1 mark
	(-1 mark if no units)	1	
	Alternative methods = 1 for formula, 1 for correct substitution of values, 1 for calculation		
	Allow correct follow through from incorrect answer to (b)		
	For example, if no formula or explanation given and figures wrongly substituted, then candidate loses 2 marks. Marker to check arithmetic for final mark eg using pvc or cv/n and putting in wrong values for n or p		Arithmetic correct but starting from "nonsense" figures eg, n= 22.5/25.0 etc
	0.018 mol $l^{-1} = 2$ out of 3 (1:1 ratio) – working must be shown 5:2 instead of 2:5 => 0.0072 mol l^{-1} 2 out of 3 – working must be shown		

Question	Acceptable Answer	Mark	Unacceptable Answer
3 (a)	1s ² 2s ² 2p ⁶ or [He]2s ² 2p ⁶ Correct orbital box notation with labels Accept subscripts instead of superscripts	1	
(b)	Of equal energy/same energy Accept same energy level/orbitals of equal energy levels All in the same energy level/orbitals same energy	1	Similar energy Same quantum numbers cancelling errors apply eg same energy and same quantum numbers
(c)	dumbbell shape must be drawn, but must not be hybridised orbital Must cross in middle or Drawing dumbbell shape over axis line is acceptable Double or triple dumbbell must be labelled correctly with p_x , p_y and p_z	1	Double dumbell
(d)	Two correct answers required for mark n = 3 $\ell = 0$ 3,0 3 0 30	1	0,3 3s <i>l</i> =3, n=0 Don't accept follow through from wrong answer in (c)

Question	Acceptable Answer	Mark	Unacceptable Answer
4 (a)	$E = \frac{Lhc}{\lambda} \text{ or } \lambda = \frac{Lhc}{E}$ = (6.02 x 10 ²³)(6.63 x 10 ⁻³⁴)(3 x 10 ⁸)/497000 = 240.9 nm (units not required) but kJ mol ⁻¹ loses 1 mark Accept 240 - 242 = 2.409 x 10 ⁻⁷ m or nm (2 marks out of 3) 1 for formula 1 for correct substitution of all values in L,h,c and 1000 1 for calculation including converting m to nm To get first mark only, must relate E to λ 4.15 x 10 ¹⁵ =1 mark out of 3 (using E = Lhc λ) ie: E = Lhc λ $\lambda = \frac{E}{Lhc} = \frac{497000}{6.02x10^{23}x6.63x10^{-34}x3x10^8}$ $= \frac{497000}{0.11974}$ = 4.151 x 10 ⁶ m = 4.151 x 10 ¹⁵ nm (1 only) E = Lhf so f = $\frac{E}{Lh} = \frac{497000}{6.02x10^{23}x6.63x10^{-34}}$ = 1.245 x 10 ¹⁵ (1 mark only) but if $\lambda = \frac{c}{f}$ also given then 2 marks out of 3	1 1	$E = Lhc\lambda \text{ lose 2 marks}$ E = hf (0 marks if nothing else given) $E = Lh \lambda$ $E = hc/\lambda$

Question	Acceptable Answer	Mark	Unacceptable Answer
(b) (i)	-391 kJ mol ⁻¹ (units not required) wrong units = 0 ignore "K"	1	+ 391
(ii)	bouble bond can also be ••• Acceptable if all three oxygen atoms in a straight line Ignore charges even if in wrong places Accept dots and crosses – assume that all are dots	1	Triangular molecule

Question	Acceptable Answer	Mark	Unacceptable Answer
5 (a)	$K_{a} = \frac{[H^{+}][HPO_{4}^{2^{-}}]}{[H_{2}PO_{4}^{-}]} \text{ (need correct charges here)}$ () in place of [] $K_{a} \text{ can be omitted, ignore states}$ Charges and formulae must be correct	1	[]+[] [] wrong
(b)	$pH = \frac{1}{2}pK_{a} - \frac{1}{2}logc \text{ [or multiples]}$ $= \frac{1}{2}(7.2) - \frac{1}{2}log(0.1)$ $= 3.6 + 0.5$ $= 4.1$ Can also use $[H^{+}] = \sqrt{(K_{a} \ge c)} - \text{ for 1 mark}$ $= 7.87 \ge 10^{-5}$ $= 4.1$	1	Wrong formula = 0/2 (wrong principle)
(c)	It is accepting a H ⁺ ion/proton or HCO ₃ ⁻ + H ⁺ \rightarrow (H ₂ O + CO ₂) or (H ₂ CO ₃) gaining a H ⁺ ion accepting a proton from H ₂ PO ₄ ⁻	1	\rightarrow H ₂ O + CO or any other incorrect products (cancelling errors) neutralises the reaction any answer in terms of comparing pK _a values

	Question	Acceptable Answer	Mark	Unacceptable Answer
6	(a)	Hydrogen $\Delta H = -143 \text{ kJ (g}^{-1})$ Petrol $\Delta H = -44.7 \text{ kJ (g}^{-1}) \text{ or } -45 \text{ kJ (g}^{-1})$ (both required for 1 mark)	1	kJ mol ⁻¹
		(sign not required)		
	(b) (i)	$O_{2}(g) + 4H^{+}(aq) + 4e^{-} \longrightarrow 2H_{2}O(\ell)$ $Accept \rightleftharpoons$ (or any other balanced multiples) (state symbols not required) (ignore state symbols)	1	Equation written in reverse even with reversible arrows
	(ii)	0.03 V (units necessary)	1	-0.03 V

Question	Acceptable Answer	Mark	Unacceptable Answer
(iii)	$\Delta G^{\circ} = -nFE^{\circ} (or -nFe or -nFV)$	1	Do not deduct mark for what is in brackets unless it is only answer given when 0
	$= -6 \times 96500 \times 1.20$	1	marks awarded $\Delta G^{\circ} = nFE^{\circ}$ (loses 3 marks) – wrong
	= -694.8 (kJ per mole of methanol)	1	principle (But if given in working and – ve sign
	(units not required) ignore KJ		given in final answer then acceptable)
	1 for formula 1 for correct substitution of all values 1 for calculation including converting to kJ mol ⁻¹ $E^{\circ} = 1.2V, 2$ marks for n = 1, -115.8 n = 2, -231.6 n = 4, -463.2 $E^{\circ} = 0.03V 2$ marks for n = 1, -2.895 n = 2, -5.79 n = 4, -11.58 n = 6, -17.37 $E^{\circ} = 1.23V, 2$ marks for n = 1, -118.695 n = 2, -237.39 n = 4, -474.78 n = 6, -712.17		+115.8 (0 marks) +463.2 (0 marks)

Question	Acceptable Answer	Mark	Unacceptable Answer
7 (a)	The concentrations of propanone and acid are (very) much higher than the concentration of iodine. Accept a lot higher or much larger	1	Constant/same/double/triple Higher larger
(b)	[I ₂]/mol l ⁻¹ Accept line touching axes line must be sloping correct way but ignore steepness Labels not required	1	Curve/horizontal line/diagonal in wrong direction Vertical line
	Time/s	1	
(c)	$Order = 2 \text{ or } 2^{nd} \text{ order}$	1	
(d)	mol ⁻¹ ls^{-1} or $lmol^{-1}s^{-1}$ – or any sequence (Accept correct answer no matter answer to (c)) But follow on from wrong answer to (c), eg if Order = 0, units = mol $l^{-1}s^{-1}$ Order = 1, units = s^{-1} Order = 3, units = $l^2 mol^{-2}s^{-1}$	1	

Question	Acceptable Answer	Mark	Unacceptable Answer
8 (a)	Phosphoric acid or aluminium oxide/alumina or conc sulphuric acid or orthophosphoric acid or H_3PO_4 conc orthophosphoric acid or sulphuric acid or H_2SO_4	1	Dilute sulphuric acid or dilute phosphoric acid or (aq) Conc H_2SO_4 and HNO_3 (cancelling errors)
(b)	Cyclohexanol contains hydrogen bonding (in O-H group) It has a greater potential for hydrogen bonding H-bonding and van der Waals forces Or correct diagram showing intermolecular forces going from O to H	1	Stronger intermolecular forces Cancelling errors apply here eg, <i>inside</i> molecules rather than <i>between</i> molecules Cyclohexene has hydrogen bonding
(c)	The sodium chloride is denser or separates the mixture better Cyclohexene less soluble in NaCl(aq) than in water or insoluble in NaCl(aq) or cyclohexene is more soluble in water Accept correct answer using salt water instead on NaCl(aq)	1	Cyclohexene is soluble in water Use of word 'reacts'
(d)	Making the derivative (solid/precipitate/hydrazone) Taking the melting point and compare with the theoretical value (or with accepted value or with the Data Book value)	1	Check melting point (on its own without suggesting comparison)

Ques	tion	Acceptable Answer		Unacceptable Answer	
9 (a)	1	C or (CH ₃) ₂ (C ₂ H ₅)COH	1		
(b)		exchange of <u>any</u> two groups around the chirally-substituted centre gives the other optical isomer H H H $Wedges notHO CH_3 HO CH_3 CH_3 CH_4 HO CH_3CH_4 CH_3 CH_3 CH_4 CH_3 CH_4 CH_4$	1	Lose marks for bonds to wrong symbol (however take into account that this is more difficult with wedges)	
(c)		H H H H C C C H ₂ OH HOH ₂ C H C H ₃ C C ₂ H ₅ CH ₂ OH HOH ₂ C C C ₂ H ₅ CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₃ CH	1	$H_{3}C \xrightarrow{H} CH_{2}OH$ $L C_{2}H_{5}$	

Question	Acceptable Answer	Mark	Unacceptable Answer
10 (a)	 Propan-1-ol has a smaller chain length/alkyl group /hydrocarbon part or has smallest molecules OH group in Propan-1-ol makes up larger proportion of molecule (or of molecular size) Propan-1-ol is more able to form hydrogen bonds (with the water molecules) Correct answer in terms of size, eg, the other two are bulkier molecules O – H in propan-1-ol is more polar or propan-1-ol is more polar (no explanation needed in terms of inductive effect) 	1	Least branching Smallest mass Answer in terms of propan-1-ol being a primary alcohol
(b) (i) (ii)	Acid chloride/acyl chloride/acid anhydride $C=O$ or $\begin{pmatrix} C=O \text{ instead of } C=O \\ & \\ Cl & Cl & OH \\ \end{bmatrix}$ Correct name – ignore wrong structure More vigorous reaction/Faster reaction/Higher yield not reversible equilibrium lies further to the right reacts more readily can be done at a lower temperature Note that answer to (ii) need not follow (i)	1	Carboxyl chloride = 0 (but not a cancelling error) halide acid (but not a cancelling error) carboxyl salt (but not a cancelling error) Do not accept follow through from incorrect answer above, since cancelling errors would apply Safer/cheaper/easier made

	Questic	n		Acceptable Answer	Mark	Unacceptable Answer
11	(a)	(i)	Iron(III) bromide (F Iron(III) chloride (F Aluminium bromide Aluminium chloride	eCl ₃) e (AlBr ₃)		$ \begin{array}{l} Iron(II) \ bromide \\ Iron(II) \ chloride \\ Al_2Cl_6 \\ Fe_2Cl_6 \end{array} \begin{array}{l} but \ not \ cancelling \\ errors \end{array} $
					1	
		(ii)	NO ₂ or Nitrobenzene or din	Accept multisubstituted, and/or alternate double/single bonds instead of delocalised electrons and one or more H atoms shown on the benzene ring	1	No ring nor alternate double/single bonds Phenylnitrate (but not a cancelling error)
		(iii)	Sulphonation/sulfon		1	Sulphonification/sulphenation/sulphanation/sulphurification
	(b)		ring (in graphite the or can't move from electrons are trapped	localised electrons are restricted to the y can move throughout the network) molecule to molecule or the delocalised in electron clouds m one molecule to another		Not free to move (on its own) Benzene has discrete molecules

Question	Acceptable Answer	Mark	Unacceptable Answer
12 (a)	$ \begin{array}{cccccccccc} H & H & H & H & H & H & H \\ & & & & & & \\ H - C - C - C - C - H & \text{or} & H - C - C & - C - H \\ & & & & & \\ H & CN & H & H & C \equiv N & H \end{array} $		2 given, 1 correct other incorrect then CE Lose mark for bonds to wrong symbol, but only on one occasion per question
	or CH ₃ CH(CN)CH ₃ or CH ₃ CHCNCH ₃	1	
(b)	(2-)methylpropanoic acid H H H H H CH ₃ O H-C-C-C-H or H-C-C-C-C H C H H H OH HO O or CH ₃ CH(CH ₃) C O OH Accept COOH, CO ₂ H Follow through from wrong position of CN in (a) gives butanoic acid (2 marks if correct follow through from (a) – structure and name) butanoic acid and correct structure but not a follow on from (a) – 1 mark only	1	Correct name for wrong formula = 0, unless answer fits in with $C_4H_8O_2$ eg ester structure + correct name gives 1 mark out of 2
	or ester structure + correct name = $1 \text{ mark out of } 2$		

Question	Acceptable Answer	Mark	Unacceptable Answer	
(c) (i)	(2-)methylpropan-1-ol Follow through from wrong position of CN in (a) gives butan-1-ol for 1 mark	1		
(ii)	Acidified (potassium) dichromate or Acidified (potassium) permanganate or (Hot) copper(II) oxide	1	CrO ₃ in pyridine Copper oxide Copper(I) Oxide Tollens' reagent Benedict's reagent	

Question	on Acceptable Answer		Unacceptable Answer	
(d) (i)	Nucleophilic substitution	1		
	2 molecules determining the rate of the reaction or Where the rate determining step (RDS) /or slow step involves a collision between two particles/2nd order reaction/bimolecular	1	2 particles in reaction concentrations of 2 particles important for RDS	
(ii)	$\begin{bmatrix} CH_{3} \\ NC \cdots C \\ H \\ CH_{3} \end{bmatrix}^{-}$ Must show – ve charge on central carbon or outside brackets as shown $\begin{bmatrix} or \\ H \\ H \\ -C \\ H \\ H \\ -C \\ -H \\ H \\ -C \\ -H \\ H \end{bmatrix}^{-}$ nucleophile and leaving group need not necessarily be on opposite sides of central carbon $\begin{bmatrix} H \\ H \\ -C \\ -H \\ H \\ -C \\ -H \\ H \end{bmatrix}$	1	All 5 solid lines around central C (bond breaking and bond forming must be shown as dotted lines)	

Question	Acceptable Answer	Mark	Unacceptable Answer
13 (a)	Labels not needed but scale on x-axis required TMS peak can be omitted to 9 8 7 6 5 4 3 2 1 0 Chemical shift, δ /ppm Peaks at correct position (can be single lines) Correct ratio of height of peaks/area under peaks (peak between 0.5 and 3 ppm is approx three times the height/area of the peak between 9 and 10.5 ppm)	1	
(b)	Tetramethylsilane or TMS TMS + any name close to tetramethylsilane	1	Tetramethylsaline (without putting in TMS)

[END OF MARKING INSTRUCTIONS]